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ABSTRACT

We propose an automatic and dynamic generation of
GPU programs to mix renderings and enhance informa-
tions for visualization of high scale scenes. Mixing dif-
ferent kinds of rendering techniques in the same frame en-
hances pertinent informations on 2D images or 3D scenes.
This is achieved in one pass because one and only one GPU
program is used to render the scene. New rendering tech-
niques can be imported and we present a method to auto-
matically build and dynamically updated the program used
by the GPU. For a given 3D scene or a 2D image, the user
chooses key points, imports rendering techniques described
as GPU programs and our model constructs one GPU pro-
gram that render the scene with these different rendering
techniques. The key points, the rendering techniques used,
the camera position can be interactively changed by the
user. In this paper we present the model used to mix render-
ings, a method to automatically generate and dynamically
update GPU programs. The images produced by our sys-
tem are presented and results are discussed.
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1 Introduction

This paper presents a visualization method which mix dif-
ferent rendering techniques in the same frame to produce
more informative images. These rendering techniques can
be imported by the user and we focus on the automatic and
dynamic generation of GPU programs that allows us to
have real time mixed renderings on large scene.

Visualization is commonly used to communicate a
message by an image. These images can be generated
by a rendering process or directly acquired from any sen-
sors. A treatment can be applied on 2D images or dur-
ing the rendering process of 3D scenes to improve their
visualizations. Generally, one and only one treatment is
used at each frame. For example, rendering techniques like
Gouraud Shading, Phong Shading, textured, material, toon

shading [1], hatching [2], [3], deformation of the 3D mesh
according to the viewpoint [4], [5], edges [6], [7], [8], [9]
can be applied. On images, well-know treatments like for
example Sobel �lter [10], dilation, erosion [11], luminance,
sepia tone can be achieved. As one can see each of these
techniques have its favorite applications, advantages and
drawbacks depending on what we want to visualize.

One of the main ideas of the paper is to consider that
we can use simultaneously more than one technique at
each frame to render the scene or the image. In computer
graphics this idea is recent but in architecture for example,
this technique is commonly used to create maquettes in
city planning: new buildings are designed with details
(colors, windows, trees, �owers) while other existing
construction are designed with their only shapes.

We have proposed a method to mix different render-
ing techniques [12] for 3D scenes. It combines different
renderings from a given �xed list in the same frame in one
pass. The user can apply particular renderings on each part
of the scene. Moreover every parameter can be modi�ed
by the user dynamically. This model allows us to focus
on a point or a path in a large scene. To obtain real-time
rendering, the method is based on GPU programming and
the geometry of the scene is not duplicated. So one and
only one GPU program is used to mix different rendering
techniques and the geometry of the scene is treated one
time by this GPU program. It supposes that each rendering
technique can be done in GPU and that each available
rendering has been merged in one GPU program. This
explain why the list of rendering techniques is given and
�xed. The main drawbacks of this method are: the given
and �xed list of rendering techniques and only 3D scenes
can be rendered with this method.

We propose to automatically and dynamically change
the GPU program when the user imports a new rendering
technique. The new rendering technique will be included
to the list of the available rendering techniques and a new
GPU program is automatically generated and dynamically
updated to mix this new rendering technique with the
previous ones. As described above, mixing rendering on
3D scenes is not enough. Thus we present also a method



for 2D images.

In the following, we present the general algorithm of
our model. Then, we focus on the automatic generation
of GPU programs. Our parser and GPU programs genera-
tor are presented. We explain also how image processing
techniques and rendering techniques for 3D scenes can be
mixed easily. Examples on 2D images and 3D scenes with
various treatments (2D image processing and 3D rendering
techniques used independently or simultaneously) are then
detailed.

2 Our model

In this section we describe brie�y the model [12] used
to mix different rendering techniques at the same time.
Only a brief description is given to introduce terms used in
the following. This model will be modi�ed to be able to
generate automatically and dynamically GPU programs.

In our model, the user speci�es:

� key points which are points of the 3D space. In the
following n is the number of key points given by the
user;

� used renderings and for each of them four distances
dr0, dr1, dr2 and dr3 where[dr0; dr3] is the range
within the rendering is used.

1. dr0: the minimal distance in order to use this
rendering;

2. dr1: the minimal distance where we maximize
the use of this rendering. Betweendr0 anddr1

the rendering will be shaded;

3. dr2: the maximal distance where we maximize
the use of this rendering. Betweendr1 anddr2

the rendering will be maximized;

4. dr3: the maximal distance in order to use this
rendering. Betweendr2 anddr3 the rendering
will be shaded.

� a mode to consider key points:

– single points: key points are considered indepen-
dently;

– points of a polyline: the key points form a poly-
line;

– points of a polyline loop: in this case, we con-
sider then key points asn points of a polyline
andPn � 1P0 is considered as a polyline segment.

The top left of �gure 1 presents four key points
given by the user and their visualizations on the scene (red
spheres). The top right shows the distances for a texture
rendering with a point mode given by the user on the
interface and the result on the scene. The distancesdr0

Figure 1. Example of 4 key points on 3D scene, distances
to apply rendering (textured) and modes (points, line, poly-
line) given by the user.

and dr1 are equal to 0.0,dr2 is equal to 0.5 anddr3 is
equal to 0.8. Thus texture is applied in the range of 0.0 to
0.5 from the key points and in the range between 0.5 to
0.8 the texture is applied shaded with black. The bottom
of the �gure 1 shows the in�uence of the used mode with
the same key points. The polyline mode is presented at the
bottom left and the polyline loop mode is shown on the
bottom right.

In this example we gave four key points, one ren-
dering and its associated distances. Note that the number
of key points, their coordinates, the number of used
renderings, the renderings chosen and the distances could
be modi�ed dynamically by the user.

The GPU program that blends renderings is per-
formed both in the vertex and the fragment shaders. The
vertex shader is used to pre-compute values needed in the
fragment shader where the main process is realized. The
general form of the algorithm is:

For a given fragmentF

Compute the closest distanced to the key points
according to the mode used1

For each rendering

Computev, the weighted value to be ap-
plied to the rendering depending on the dis-
tances given by the user andd. 2

Compute the color depending on the render-
ing chosen by the user and weight it byv. v
is also added to the alpha value of the frag-
ment. 3

Sum the colors previously obtained and clamp it
between 0 and 1 for each component.



Figure 2. Different views of San Diego with 4 render-
ings techniques used simultaneously. (textured, material,
celshading, wbdist)

The structure of3 is given in HLSL because used in
the following. Remark that at the present time, fragment
shaders do no permit loops on data which do not reference
a texture. So even if we present the algorithms including
loops for the reader, we unfold it. This limit should disap-
pear with future versions of graphic cards and shaders. Let
nrenderings be the number of renderings used simul-
taneously by the user,render[i] the name ofith ren-
dering used,v[i] the weighted value computed for theith
rendering used andcol the color computed.

for (int i=0; i<nrenderings; i++){
if (render[i] == MATERIAL){

col.rgb += gl_Color * v[i];
col.a += v[i];

}
else if (render[i] == TEXTURED){

col.rgb += texture2D(tex,gl_TexCoord[0].st)
* v[i];

col.a += v[i];
}
...

}

The �gure 2 presents images produced with this
method where textured, material, wbdist and celshading
rendering techniques are simultaneously used.

3 Automatic generation of GPU programs

In this section we present the dynamic and automatic gener-
ation of GPU programs used to mix rendering techniques.
It merges the algorithm presented above with a program
imported by the user. This operation can be repeated by the
user and at the next time, the GPU program imported by
the user will be merged with the GPU program previously
generated. Thus, we consider that we merge always two

independent GPU programs (one is imported by the user,
the other one is either the initial GPU program mentioned
above or an automatic generated GPU program). This can
be achieved while GPU capabilities are available.

We �rst present the structure of a GPU program. Then
we focus on our parser and we detail the method that
merges the two GPU programs.

3.1 Basics on GPU programs

A GPU program is decomposed in different shaders. Each
of them treats different parts of the renderer in the graphic
card pipeline:

� Vertex shader affects vertices and its parameters (nor-
mal, texture coordinates, color. . . ). Transformations
and lighting calculations are performed into vertex
shader.

� Geometry shader is used to affect primitives com-
posed by a serie of vertices. This pipeline stage is
not available on all graphic cards and generally GPU
program do not include it.

� Fragment shader affects individual fragment of an ex-
isting primitive. It corresponds to the rasterization
pipeline stage.

Shaders can be directly written in assembly language
or in a C-like Shader Language as OpenGL Shading Lan-
guage or GLSL for the OpenGL API [13]. Softwares, like
ShaderGen, Rendermonkey, ShaderDesigner allow the user
to write shaders (GLSL) through a GUI. We have created
a module in our application to import directly GPU pro-
grams created with ShaderDesigner. Files generated with
ShaderDesigner are description of GPU programs in XML.
These are composed by a vertex shader, a fragment shader,
parameters of the OpenGL machine and can include tex-
tures needed by the shaders and variables set outside the
shaders and used inside (attribute, uniform). Remark that
other modules that include GPU programs produced by
other softwares can be easily produced.

3.2 Our parser

We have created a parser to analyze the GPU program im-
ported by the user. Our parser is designed to:

1. check if the �le description generated by ShaderDe-
signer corresponds to a “valid executable” GPU pro-
gram. Vertex shader and fragment shader are com-
piled to produce shader object and linked to produce
GPU program (program object). The quali�ed vari-
ables (varying) are checked during theses steps. The
compiler and linker are a part of the OpenGL driver. If
textures should be used, �les are checked. Note that if
an error is detected into one of these steps, the process
is stopped and the next steps are not realized.



2. generate a list of all quali�ersL Q declared at global
scope and check that quali�ed variables (attribute and
uniform) are also described (name and type) into the
�le description given by the user. If there is no er-
ror, the GPU program is a “valid executable” and all
parameters needed to its execution are also available.
The GPU program is then included into the list of
available standalone rendering techniques.

3. generate a list of all functionsL F used in vertex and
fragment shaders.

4. generate a list of all variables declared at global scope
L V .

5. generate a list of all texture unit usedL T .

These lists,L Q , L V , L F andL T are also used to generate
the new GPU program.

This �rst step of the integration process is mainly de-
signed to analyze imported �le given by the user. If no
error occurs, it allows us to integrate GPU program to the
list of standalone rendering techniques. Moreover lists of
variables, texture units and functions have been created and
will be used during the next step to generate a new GPU
program and merge existing rendering techniques with this
new one in one GPU program.

3.3 Generation of a new GPU program

This step generates automatically a new vertex shader
VN and a new fragment shaderFN . Vertex (respectively
fragment) shaderVN (resp. FN ) is composed by vertex
(resp. fragment) shader importedVI (resp. F I ) and
existing vertex (resp. fragment) shaderVE (resp FE )
designed to mix different rendering techniques. These
(VN andFN ) will be compiled and linked to create a new
GPU program (GPUN ). This GPU program will replace
existing GPU program (GPUE ) designed to mix rendering
techniques.

After a common preliminary step, vertex and frag-
ment shaders can be generated independently. The process
can be described as follow:

1. Preliminary Step. A list of rendering techniques used
in GPUE is maintained inFE . As a preproces-
sor is available in GLSL, we use a list of#define
Rendering Number where Rendering corre-
sponds to the name of rendering used (textured, ma-
terial...) andNumber to the value associated to the
rendering. So we �rst create anid for the new render-
ing. It corresponds to the value incremented by one
unit of the last rendering in the list.

2. Generate Vertex Shader. This step allows us to gen-
erateVN with VE andVI . The general form of the
algorithm is:

� CreateVN with a copy ofVI .

� Search in the global scope ofVN , the variables
in L V andL Q and change their names. Name
becomes variable name andid concatenated.

� Search in all functionsL F of VN , all variables
in L V andL Q and update their names according
to previous step.

� Search inVN the main function. The main func-
tion is renamed to: the basename of the �le given
by the user, theid and the word main concate-
nated. This is done because this function should
become the main function of the new rendering
and not the main function of the shader.

� Add VE at the end ofVN and add to the main
function a call to the main function previously
renamed (with the new name). This call is very
simple because there is no parameters.

3. Generate Fragment Shader. This step allows us to gen-
erateFN with FE andF I . The general form of the
algorithm is:

� CreateFN with a copy ofF I .

� Search in the global scope ofFN , the vari-
ables inL V and L Q and change their names.
Name becomes variable name andid concate-
nated. Note that at this time, all variables inL V

andL Q should have been found and treated.

� Search in all functionsL F of FN , all variables in
L V andL Q and update their names according to
previous step. Note that at this time, all functions
in L F should have been found and treated.

� Search inFN the main function. This func-
tion should become the main function to com-
pute the color of the fragment using the new
rendering. So as described in the algorithm
that generates vertex shader, we must rename
this function. Moreover the special output vari-
ablegl FragColor , used to set the color of
the fragment, do not appear. This output vari-
able is set during the mixing of renderings with
different colors in FE which will be added
to next step. Also this function should re-
turn a color (vec4 ). Then three treatments are
achieved: the data type returned by the main
function becomesvec4 ; the main function is
renamed to: the basename of the �le given by
the user, theid and the word main concatenated;
the last instruction wheregl FragColor is
set toX (i.e gl FragColor = X; ), becomes
return (X); .

� Add FE at the end ofFN and add to the list of
#define Rendering Number a new line
where Rendering is the concatenation of
basename of the given �le andid; theNumber
corresponds toid.



� Modify the algorithm presented in section 2 and
add a call to the function previously created. As
1 and 2 are independent of renderings, only3
is modi�ed. We add in the loop a new test and a
call to the main function of the new rendering. It
becomes:

for (int i=0; i<nrenderings; i++){
...
else if (render[i] == Rendering){

col.rgb+=Renderingmain().rgb * v[i];
col.a += v[i];

}
}

where Rendering is the concatenation of
basename of the given �le andid. Remark that
only the three �rst components returned by the
function are considered. The last one is the al-
pha value and should be the sum ofv of all ren-
derings.

4. Search and compare all texture units used inFN with
L T . As texture units used are uniform samplers, if a
texture unit is used by two renderings, the value as-
sociated to the uniform sampler of the newest render-
ing sent from the application to the fragment shader is
modi�ed.

At the end of this process,VN andFN are compiled
and linked to formGPUN . GPUN is then dynamically
sent to the graphic card and replacesGPUE . Remark that
function prototypes are not needed since new rendering is
�rst written in new shaders. Note that comments included
in the all source code are also updated in the �nal shaders.
This allows the user to obtain a vertex and fragment source
code more readable.

This process should be repeated while GPU capabili-
ties are available. Note that with this method we can import
another shader with the same name (or the same shader, or
shader that uses names of functions or variables already
present in other shaders). Remark that a general function
in our application have been added to pass to each pipeline
stage all parameters needed (uniform, attribute). This func-
tion uses theid generated during the preliminary step to
modify the name of parameters used.

3.4 Image Processing and automatic generation of
GPU program

As described in introduction, the model was originally de-
signed for 3D scenes. It can be easily adapted to image
processing and we have included this as a new capability.
Image processing can be easily achieved on GPU program
while we consider a quad (whereZ = 0 ) textured with the
image. Note that the quad ratio depends on the image ra-
tio. Then GPU programs realize image processing using
a texture unit and can be considered as another family of

rendering techniques. So our method mentioned above can
be applied to mix these renderings.

4 Images and results

In this section we present some images produced by our
model with GPU programs imported. Those have been pro-
duced on a PC pentium IV 3.6Ghz with 1Go of memory
and a nvidia graphic card Quadro FX 1400. The �gure 3
presents results on the San Diego model. Three keys points
are used for the four �rst images. We use textured, pro-
cedural bump mapping and wood renderings for the top of
the �gure. On the second line of �gure, bump mapping
is replaced by wood and antialiased procedural pattern is
used. Excepted textured rendering, all of these renderings
have been dynamically imported and at each time a new
GPU program was automatically created. The last image of
the second line used celshading rendering instead of wood
rendering. Note that the distancedr3 used for the second
rendering (wood or celshading) is 6.54 while the distances
used for antialiased procedural pattern are between 4.0 and
7.0. This explain why the colors of lines are white and
brown in one case and white and gray in the other one. As
celshading rendering was not imported (it is included at the
start of the execution of the program), the same GPU pro-
gram is used to realize these two last images. Remark also
that all of these renderings are realized in one pass on the
GPU. Last image is produced with one key point, two ren-
derings imported (wood and bump mapping) and blending.
This effect is produced because some fragments are par-
tially colored (alpha is different of 1) due to the distances
chosen for the two renderings.The minimal frame rate ob-
tained for this scene composed by 20 000 triangles is 30
frames per second with 4 renderings used simultaneously
and 3 key-points. In fact, the number of key-points used
has no in�uence on the frame rate (i.e time computation
needed for the distance computation is negligible).

In the �gure 4, we mix 2D and 3D renderings tech-
niques. We have used textured, luminance and sepia for the
�rst image. The second one includes Sobel �lter. Remark
that for these examples, the object is always a 3D scene and
the can manipulate it as previous scenes presented. Remark
that we mix 3D and 2D rendering techniques in one pass for
a 3D scene. The third one used also a Sobel �lter but the
input is the quad textured with the image generated at the
top left of the �gure. This can be viewed as a two passes
rendering. The �rst one is used to create an image and the
second one treats the image. This illustrates another capa-
bility of our system. Note that for the last image, the system
uses only a textured quad, the geometry of the city was not
preserved.

The �gure 5 presents treatments realized on an image.
The top left of the �gure shows the original picture and the
four key points (red spheres) used in the other images. The
top right image is produced with only the �rst key points
and textured, luminance, sepia and Sobel �lter rendering
techniques. Sobel �lter is used to produce a 3D effect on



Figure 3. Imported shaders applied to San Diego Model
(wood, procedural bump mapping, antialiased procedural
pattern) and dynamic generation of a new GPU Program.

Figure 4. 2D and 3D imported shaders applied to San
Diego Model. Sepia, luminance, Sobel �lter and textured
are used simultaneously.

Figure 5. View of “Rolland Garros” and “Parc des Princes”.
Key-points used and examples of rendering realized by the
GPU program.

Figure 6. 2D renderings techniques on 2D image. Only
Sepia, luminance and Sobel Filter have been imported.

the stadium. The bottom of the �gure presents two different
views of the image produced. We use the four key points
with a polyline mode and three rendering techniques are
used (textured, sepia and Sobel).

Other examples are given in 6. We have applied our
method on a simple photography.

5 Conclusion

We have proposed an automatic and dynamic generation
of GPU programs to mix renderings and enhance infor-
mations for visualization of high scale scenes and images.
Based on GPU programing, this model is real time for
large scale scenes visualization. We have presented the
dynamic and automatic generation of GPU programs used
to mix rendering techniques. It is based on a parser and a



generator of GPU programs. We are abble to automatically
merge an existing GPU program with a program imported
by the user. This can be achieved while GPU capabilities
are available. This is achieved in one pass on the GPU,
so the geometry is rendered one time and we obtained
real-time on complex scene. Moreover every parameters
(distances, number of key-points, position of key-points)
can be changed by the user without any effects on the
frame rate.

Future works will be done to analyze GPU program
imported by the user. The capabilities of the GPU are not
very important and it seems crucial to detect same func-
tions, same variables of different shaders imported into the
same GPU program.
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