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We present an algorithm that detects non transitive connections in the game of Go.

An optimized Alpha–Beta search is used on top of two Generalized Threats Searches,

one for each of the two connections. It deals with full board situations such as the ones

encountered in real games. Our program is able to solve problems such as the double

monkey jump or the double keima on the second line. Even if the results are not theo-

retically perfect, they are pretty reliable given the results on a test suite.

� 2004 Published by Elsevier Inc.
 C

RR

E1. Introduction

In this paper, we explore a way to reduce the complexity of a search on a

double connection by searching both connections separately as much as possi-

ble. In the best case the two connections are independent, and a complex search

that would cost O((2p)2d) can be reduced to two searches of complexity O(pd),
the variable p being the average number of possible moves in a connection

game, and d the depth of the search for solving one of the connection game.
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In practice, the two connections are seldom perfectly independent. Even when

they are not independent, it is useful to search the two connections separately

as it helps finding sets of relevant moves.

Programs have weaknesses at finding non transitivities as can be seen in

tournament games [1]. Some strong Go programs handle non transitivity using

hand-coded patterns. For example, Many Faces of Go uses a few hundred such

patterns. Since there are too many cases of non transitivity, this approach is

limited.
The Section 2 describes the problem of the non transitivity of connections.

The Section 3 outlines the adaptation of Generalized Threats Search to the

connection game. The Section 4 details the evaluation function and the selec-

tion of moves used in our transitive connection search algorithm. The Section

5 gives experimental results. Eventually, the Section 6 concludes and outlines

future work.
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In this section we define the problem of the non transitivity of connections.

Even the best computer Go programs have problems dealing with non transi-

tivity. This problem is a special case of the more general problem of the depen-

dence between two or more different sub-games.

Let A, B, C be three stones of the same color, CAB the connection between A

and B and CBC the connection between B and C. We call max player the player
who wants to connect and min player the player who wants to disconnect. In

the starting position, the connections CAB and CBC must be won; otherwise the

transitive connection would not be won a fortiori.

The easiest case is when the connections CAB and CBC are independent.

Then the transitive connection is won. Fig. 1 shows an example.

The interesting cases are when the connections are not independent, that is

to say when there is at least a move by min player which threatens to break

both connections. Then the transitive connection may or may not be won.
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Fig. 2. Non transitive connections.

Fig. 3. Transitive connections.
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moves first: the move that disconnects is white n. Now Fig. 3 shows an exam-

ple of two connections that are not independent but which make a transitive

connection nonetheless. The connections CAB and CBC are not independent be-

cause a white move at 1 threatens to break both; but then a black move at 2
would repair both connections.
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EC3. Generalized Threats connection search

In order to find transitive connections, we have to solve the problem of find-

ing direct and single connections. This section is about the single connection

game. We have used Generalized Threats Search [2] to solve the single connec-
tion game. The threat used for these experiments is the (8,5,2,0) general threat.

Moves in a Generalized Threats are associated to an order. The order of a po-

sition is the number of moves in a row by the same player that are required to

win the game. Moves of order n are moves associated to positions of order less

or equal to n. In the (8,5,2,0) threat, eight is the number of order one moves

allowed in the Generalized Threat, five the number of order two moves and

two the number of order three moves. Only threats that have less moves for

each order are verified at min nodes.
It is not mandatory to use Generalized Threat Search; however, whatever

algorithm we use to find direct connections, it has to send back what we call
U
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Fig. 4. Two possible traces for a connection.

4 T. Cazenave, B. Helmstetter / Information Sciences xxx (2004) xxx–xxx

INS 7123 No. of Pages 12, DTD = 5.0.1

24 November 2004 Disk Used ARTICLE IN PRESS
NC
ORR

EC
TE

D
PR

Oa trace. Roughly speaking; the trace is a set of intersections that may change

the result.

Precisely, the trace is a set of empty intersections such that if none is mod-

ified, the result of the search associated to the trace is not modified. In order to
compute the trace of a connection, we have applied the following principle: for

each test in the search, add to the trace the intersections that enable the test to

be true. In most cases, we have to choose some intersections among many to be

included in the trace. For example if the test is that the string has at least two

liberties, any pair of liberties could be added. In practice, there are different

possible traces that can be associated to a given search. In Fig. 4 we can see

the difference between the trace found by our program for a connection, and

a minimal trace obtained by hand.
The evaluation function for the single connection returns:

• Lost if one of the two strings to connect is captured in a ladder,

• lost if no max moves have been found, usually because the path between the

two strings is too long and the common adjacent strings have too many

liberties,

• won if the two stones to connect are in the same string,

• unknown otherwise.

We use specialized functions to find the max moves. The order of a threat is

the number of moves in a row the max player has to play in order to win the

game [2]. The functions called for finding the max moves depend on the order

of the threat. We have different specialized and heuristic functions for finding

possible moves that connect in one move, in two moves or in three moves.

When there is a possibility for one of the two strings to be captured, the only

max moves considered are the moves that save the threatened string. Concern-
ing the min moves, the Generalized Threat Search algorithm uses the trace of

the verified threat to find the relevant min moves.
U
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4. Search for transitivity

We use an Alpha–Beta algorithm with transposition tables, two killer moves

and the history heuristic. The game specific functions of our Alpha–Beta are:

the evaluation function, and two functions minMoves and maxMoves, which

return sets of relevant moves for the players min or max.

4.1. Evaluation function

The evaluation function searches the connections CAB and CBC in isolation

using the Generalized Threats Search algorithm, and tries to deduce from this

the status of the transitive connection. The situation is different depending on

who is to play.

We consider first the case where max player is to play. The connections CAB
and CBC are first searched with max player playing first, then with min player

playing first. Besides the results, the searches also return the traces of all inter-
sections on which the results depend. There are two cases where we can be sure

of the status of the transitive connection:

• If CAB or CBC is lost, assuming max player plays first, then the transitive

connection is lost.

• If one of the connections, say CAB, is won (assuming min player plays first),

if the other, CBC, is winnable (i.e. it can be won if max player plays first), and

if the traces on which those two results depend are disjoint, then the transi-
tive connection is winnable. Indeed, in order to win it suffices for max player

to play the winning move in connection CBC.

We now consider the case where the player min (i.e. the player to discon-

nect) plays first. There are again two cases where we can be sure of the status

of the transitive connection:

• If CAB or CBC is lost, assuming min player plays first, then the transitive con-
nection is lost.

• If both connections CAB and CBC are won, assuming min player plays first,

and if the traces on which those two results depend are disjoint, then the

transitive connection is won.

4.2. Choose of min moves

In case the evaluation function cannot decide the status of the transitive

connection we have to continue the main Alpha–Beta search which deals with

the transitive connection as a whole. Hopefully the searches that have been
U
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relevant set of moves.

We take as set of min moves (moves for min player) the moves that threaten
to break either connection CAB or CBC. This is the union of the traces of the

two searches that have shown that the connections CAB and CBC are won when

min player plays first. An example of a set of relevant min moves found by our

program is given in Fig. 5.

It is possible to use the intersection of the traces rather than the union. This

is less safe as can be seen for instance in problem 13 of our test suite (Fig. 10),

where the only move that disconnects may not be in the intersection. In prac-

tice, using the intersection of the traces solves more problems and takes less
time as can be seen in the experimental results section.

In fact, even taking the union of the traces as the set of min moves is not

perfectly safe. We have found that it is safe for the problems of our test suite,

but we have built a transitivity problem (Fig. 6) where it misses a move. The

move white 1 does not threaten either connection CAB or CBC, but it does break

the transitive connection because black cannot defend against both white 2 and

white 3. One can note that white 3 would have directly worked too, so even in

this problem we would find at least one disconnecting move.
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4.3. Choose of max moves

In order to find a set of max moves, it is not suitable to use traces as for min

moves; instead it is better to use the notion of order. The order of a connection

is the number of moves in a row that are needed to join the two strings in the

same string, if the opponent does not play [2]. Fig. 7(a) shows max moves to

connect of order 2. There is a path of length 2 composed of empty intersections

between strings A and B. Connecting may also involve capturing opponent
strings adjacent to both strings A and B. Fig. 7(b) gives an example of the order

2 connection moves related to capturing a common adjacent string. Fig. 7(c)

details the moves of order 3 to connect strings A and B.

Our algorithm to find order nmoves between the strings A and B is shown in

Fig. 8. In case this algorithm is applied to a connection of order less than n, it

will not return all the moves of order n (which would be all the legal moves!),

only those close to the connection, which is usually an advantage.

The set of max moves depends on the order at which we want to search the
transitive connection. We have chosen to take as set of max moves the union of

the sets of moves of order up to ordermax in each connection CAB and CBC.

The variable ordermax equals at most the order of the maximum threat for

the connection search plus one.

An example of a set of max moves found by our program is given in Fig. 9.

In this case it is obviously far from perfect, because our program selects moves

of order 3 although the two connections are of order 2.
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Fig. 7. Moves of order 2 (a and b) and 3 (c).

Fig. 8. Algorithm to find order n moves between strings A and B.
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In our experiments, the maximum threat used for the Generalized Threats

connection search has been set to (8, 5, 2, 0). We only choose moves of order
less or equal to three for the connections CAB and CBC in order to find the max

moves in the transitive search. The maximum number of moves in each of the

two Generalized Threats Searches is limited to 100,000 unless stated otherwise.
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Fig. 10. Problems of the test suite.
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We have built a test suite of 22 problems depicted in Fig. 10. The discon-

necting moves, if any, are marked. Only problem 17 involves a ko. Two thirds

of the problems are taken from Golois games, and one third are classical prob-

lems. The problems from Golois are taken from games where it failed to ana-

lyze transitivity correctly. This test suite is available for download on the first

author�s web page.

In order to compare transitive search with another algorithm, we have tested

an optimized Alpha–Beta algorithm that uses Golois moves generators for con-
nections and disconnections. The evaluation function of this Alpha–Beta re-

turns Lost as soon as one of the two connections is Lost. A connection is

Lost if the length of any path between the two strings is strictly greater than

three. A connection is Won if the two stones to connect are in the same string.

In Table 1, for each problem, the number of moves played in the search and

the elapsed time used for the search are given. The experiments were run on a

3.0 GHz Pentium with 2 GB of RAM. The maximum number of nodes is set to

10,000,000 in the transitive search and in the Alpha–Beta. The left part of the
UN
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Nodes and time for the transitivity problems

Problem Alpha–Beta Transitive search (with union of the traces)

Moves Time (ms) Solved Moves Time (ms) Solved

1 61,188 190 Yes 115,065 180 Yes

2 348,950 1,390 Yes 56,130 90 Yes

3 85,582 330 No 397,880 560 No

4 147 10 Yes 1,857 0 Yes

5 2,687,471 6,850 Yes 384,933 620 Yes

6 8,655 40 Yes 11,670 20 Yes

7 234,806 1,910 Yes 86,656 160 Yes

8 43,537 180 Yes 5,920 10 Yes

9 72,800 320 Yes 6,231 0 Yes

10 101 0 Yes 6,503 10 Yes

11 8,307 100 Yes 31,742 50 Yes

12 88,152 400 Yes 93,959 160 Yes

13 10,000,108 39,510 No 1,906,627 3,330 No

14 21,266 40 Yes 27,442 40 Yes

15 198,569 610 Yes 372,134 490 Yes

16 10,000,256 33,300 No 10,437,826 14,320 No

17 10,000,183 29,530 No 783,545 1160 No

18 3605 10 Yes 269,258 430 Yes

19 3,828,385 16,360 Yes 109,155 220 Yes

20 22,871 50 Yes 10,186,430 14,900 No

21 988 0 Yes 6,436 260 Yes

22 13,703 20 Yes 18,846 40 Yes

Total 18 17
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table details the performance of the Alpha–Beta algorithm, and the right part

the performance of the Transitive search algorithm.

Concerning the results of the Transitive search algorithm with union of the

traces, problem 3 is not solved because in one of the forced lines a black cutting

string gains 4 liberties and is therefore considered stable. In problem 17, our

algorithm finds the good move but fails to see that it depends on a ko. In prob-

lem 20, the program fails because it does not verify that connected strings are

not captured in a ladder, and therefore the trace does not contain the capturing
move for the attacker. In problem 16, it fails because it is short of nodes in the

main search, and in problem 13 it fails because it is short of nodes in one of the

connection searches. The problem 13 involves two opponent strings that can-

not be captured, this is why our algorithm fails to see the disconnection: for

each move in the first capture search, it searches the other capture. In order

to solve it faster, we should decompose it into two independent capture prob-

lems. This is not currently done by our connection algorithm.

Table 2 details the runs of the Transitive search algorithm using the intersec-
tion of the traces for min moves instead of the union as in Table 1. The algo-

rithm using the intersection is faster, especially for problem 16 that is solved
UN
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Transitive search with intersection of the traces

Problem Moves Time (ms) Solved

1 104,025 150 Yes

2 2,558 10 Yes

3 359,609 490 No

4 1,502 0 Yes

5 5,962 10 Yes

6 10,463 10 Yes

7 23,268 50 Yes

8 1,230 0 Yes

9 6,231 10 Yes

10 5,471 0 Yes

11 14,262 20 Yes

12 93,959 130 Yes

13 1,913,120 2,720 No

14 19,165 20 Yes

15 194,050 250 Yes

16 1,214,948 1,660 Yes

17 382,636 490 No

18 67,642 90 Yes

19 99,858 150 Yes

20 145,989 250 No

21 4,298 10 Yes

22 7,723 10 Yes

Total 18
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Number of problems solved depending on max. time, algorithm and max. secondary nodes for

Transitive search

Time (ms) Transitive search Alpha–Beta

1000 5000 10,000 30,000 100,000

10 7 6 9 9 8 4

30 7 10 10 11 11 5

100 7 13 14 13 13 9

300 7 13 15 15 17 11

1000 7 13 15 15 17 15
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relatively quickly compared to Alpha–Beta and Transitive Search that do not

solve it because of a lack of nodes. In problems 5 and 8, connections are tran-
sitive. These two problems are representative of the usual problems that a tran-

sitive search algorithm has to solve (i.e. connections are usually transitive). If

we compare the transitive search algorithm using intersection of the traces with

the Alpha–Beta algorithm, we see that for these problems, the transitive search

algorithm is much faster.

The transitive search can be tuned with two parameters: the maximum tran-

sitive search time and the maximum number of nodes allowed to each connec-

tion search. Connections searches are also named secondary searches. The
Transitive search algorithm with intersection of the traces is used for the exper-

iments. In order to choose the best algorithm for a given maximum response

time, we have tested Transitive search for different secondary nodes and differ-

ent maximum response time. Table 3 gives the number of problems solved

depending on the two parameters. When choosing the appropriate number

of secondary nodes for a given maximum time, we see that Transitive search

is better than Alpha–Beta for response time inferior or equal to 1s.

Some problems that human find relatively easy such as the double keima on
the second line in problem 16 are difficult for our program, while some prob-

lems that humans find relatively difficult such as problem 21 are easy for our

program.
NC
OR

6. Conclusion

We have described an algorithm to detect non transitive connections in the
game of Go. An optimized Alpha–Beta search is used on top of two General-

ized Threats Searches. Our program is able to solve problems such as the dou-

ble monkey jump or the double keima on the second line. It deals with full

board situations such as the ones encountered in real games.
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The program can be used with the intersection of the traces for choosing

moves at min nodes. It then solves transitive problems much faster than Al-

pha–Beta and Transitive search with the union of the traces, as can be seen

for problems 2, 5, 8 and 16.

It can also be used in the safe mode, taking the union of the traces: even if

the results are not theoretically perfect as can be seen on a pathological posi-

tion, they are pretty reliable given the results on our test suite.

The program could be used in a Go program in fast mode, and with the
intersection of the traces, to detect relatively simple non transitivities. The good

point of the transitive search algorithm is that it can solve problems that can-

not be solved by some of the strongest Go programs, the drawback is that it is

much slower than a pattern based approach that only solves the common cases.

The utility of this approach is dependent on the architecture of the program.

Since the algorithm is still slow, it would be difficult to integrate it in a Go pro-

gram based on global search, because the search for transitivities would have to

be done at each call of the global evaluation, unless perhaps the results are ca-
ched. However, it could be used in programs that are not based on global

search, and that spend more time on the evaluation of the position.

There is still room for improvements in solving more quickly problems such

as problem 13. It involves improving the connection search algorithm. Future

work also includes extending it toward a more general search program for

combinations of sub-games.
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