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Abstract sources of geological data acquisition. We want to obtain, much
more rapidly, the best approximation of the original DEMs. We are
We present an algorithm mainly designed to reconstruct Digital EI- also interested in generating terrains from scratch or according to
evation Maps (DEM). Our approach relays on a fast and highly the user sketches. Thus, to create models in an interactive way, the
controllable fractal-based algorithm, we are able to create DEMs ef ciency of the chosen method becomes very important.
according to given constraints. Thus, these constraints can be given i ) . )
as scattered dataset of elevations obtained by satellite, our method Nere are many differences between the algorithms used in terrain
supersamples this data and creates the according smooth terrain suffodeling. Nevertheless, we can classify them into families, the
face. Moreover, as a painter can make a sketch of his model, thefractal-ba_\sed methods, the fractal and phy5|_cally based methods,
nal user can give or edit the main characteristics, local details and the physically-based methods, and other miscellaneous methods
morphology, of his wanted DEM instantaneously obtaining the re- that can have common points with the others.

sulting terrain surface. Note that there is no limitation on the num- The fractal algorithms are generally faster, produce varied relief

ber of local constraints (that could vary from 0 to the number of PR :

X . maps (these methods can produce approximations of terrain rough-
points of the nal DEM). Thus, the method we propose gives the - oqq) "most of time from scratch: ones are geometric [Mandelbrot
ability to modify the global aspect (the surface behavior) as well ;gg3-'Fomier et al. 1982; Miller 1986; Lewis 1987; Arakawa and
as to constralnhanyl Ioc_aLdetalldof the nal terrain modell. Thg‘ Pa- Krotkov 1996] and others are procedural [Perlin 1985; Ebert et al.
per presents the algorithm and reconstruction examples. Using a5403) byt often are not easily restrictable and also suffer from lack
Root Mean Square Error computation between an original model of realism. For example, hydraulic erosion is not or roughly imi-

and its downsampled-then-reconstructed version, the results Conyaieq Rare are those which are able to create terrains according to
rm the method good behavior and show its ef ciency. Other vari- e xed constraints. In [Kelley et al. 1988], Kelley et al. pro-
ous terrain models and alternative applications are presented. pose an approach where a generated water drainage network con-
. . . ) strains a simple terrain surface, thus the relief is modeled through
CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional the water erosion process, an improvement of this approach was
Graphics and Realism—Fractals; 1.3.3 [Computer Graphics]: Pic- given in [Nagashima 1998]. In [Prusinkiewicz and Hammel 1993]
ture/lImage Generation—Line and curve generation; 1.3.5 [Com- prysinkiewicz and Hammel describe a method, in a single inte-
puter Graphics]: Computational Geometry and Object Modeling— grated process, that models mountains with rivers using context-
Geometric algorithms, languages, and systems; sensitive rewriting mechanisms. Otherwise, we have the fractal and
physically based methods. In [Musgrave et al. 1989], Musgrave et
Keywords: terrain, fractals, surface reconstruction, surface mod- al. have proposed one of the most realistic results by using simula-

eling, midpoint displacement tions of hydraulic and thermal erosion on fractal terrains. Note that
these three last methods do not give the end user the ability to x
1 Introduction his own constraints and that the last one can suffer from time com-

plexity. A rst solution is given by Belhadj and Audibert [Belhad]
and Audibert 2005a] where they propose to generate, using fractal-

Generating realistic terrain models is an important topic in com- d algorith listic-looking terrai d simol
puter graphics and it has been addressed with different approache$aSed algorithm, realistic-looking terrains around simply precom-
puted ridge and river networks. Their second approach, presented

for four decades. Terrain models are useful in many applications in- } A - ! :
cluding virtual reality, army, geographical informati)é)npsF))/stems, re- N [Belhadj and Audlb_ert 2005b], produces bet;er |nterpolat|_ons us-
gional planing, geology, cinema, video games and especially ight ing a b_ottom-up glgorlthm. Moreover t_he useris able to x his own
simulations. Today with satellites, even if we can get gigabytes of ridge lines, obtaining the corresponding river network and nally

more detailed real elevation datasets, the importance of the topic re-the entire DEM.

mains the same; we always want more details and even have morqp aqdition, there is the family of the physically based methods.
application elds Ilke problems of data compression or restoration.  a|| of them are too complex and can not lead to the nal result in
Thus, the successive methods or software suites try to provide moreyp, interactive way. Nevertheless, we can nd variable degrees of
and more detailed terrain models and sometimes their erosion alongcomplexity i.e. a simple model based on velocity elds of water
time. ow [Chiba et al. 1998] or a more complex one [Benjamin Neid-
This paper focuses on creating terrain surfaces starting from scat-h°|d 2005] that runs in interactive mode. Generally, these methods

tered datasets of elevations that can be obtained by satellite or othefT® USed to reproduce the various erosion phenomena, the used data
structures are sometimes more complex than a DEM, i.e. layered

e-mail: amsi@ai.univ-paris8.fr [Benes and Forsbach 2001a; Benes and Arriaga 2005] representa
tion is used to get closer to the geological model, the results have
more realistic aspect but the complexity is usually greater.

Finally, there are other various methods that can produce models
under constraints and that focus on: surface approximations [Ve-
muri et al. 1997; Pouderoux et al. 2004], decomposition [Danovaro
et al. 2003] or recomposition [Zhou et al. 2007; Brosz et al. 2006;

Chiang et al. 2005; Ong et al. 2005] and deformation [Stachniak



and Stuerzlinger 2005]. First can consist in generating a terrain
model by computing the interpolation of point clouds or contour
lines. In [Pouderoux et al. 2004] the authors managed to obtain
good approximations of scattered (downsampled) elevation datasets
using radial basis functions. Other methods use patches [Zhou
et al. 2007], small-scale [Brosz et al. 2006] or microscopic [Chiang
et al. 2005] features of existing terrains to synthesize new ones that
satisfy the user macroscopic constraints (global constraints). The
method presented in [Stachniak and Stuerzlinger 2005] deforms an
initial fractal terrain by applying local modi cations to satisfy a set

of various xed constraints. Most of these methods suffer from ei-
ther time and/or manipulation complexity.

Thus, for its ef ciency, a fractal-based approach is preferable and
we have chosen to base a part of our work on the “Bottom-Up”
approach of Midpoint Displacement methods proposed in [Belhadj
and Audibert 2005b] : the Midpoint Displacement Inverse process Figure 1: Old approach drawbacks: reconstruction of Mount

(MDI). Washington USGS DEM after the downsampling of the original

We present a fractal-based algorithm, called the Morphologically datasetto 3.3%.

Constrained Midpoint Displacement (MCMD) and based on im-

provements of the classical midpoint displacement methods and

the MDI algorithm.  Our new model satis es several kinds of the given initial constraint map is a downsampled dataset of Mount
initial constraints given by the user. Our model can either re- Washington USGS (United States Geological Survey) DEM where
build DEMs from partial elevation datasets, or generate them from the downsampling factor is 30. The local constraints (here 3.3%
scratch. The given constraints are expressed as xed elevations (l0-of the entire DEM) are satis ed but the generated surface does not
cal constraints) on the initial DEM and as curvature constraints on anymore look like the original one (cf. gure 9-(a)). This is due to
the global aspect of the nal surface (i.e. bumped or ridged). The an incorrect computing of the interpolation in the MDI algorithm
obtained models do not suffer from steep slope artifacts. and also due to total impossibility of describing the shape of the
interpolation curve. Thus we introduce in each process (MD and
MDBU) completely con gurable interpolation functions that give
us the ability to tune the global aspect of the nal shape.

In the following, we will focus on the approach presented in [Bel-
hadj and Audibert 2005b] and underline its drawbacks. We will
explain why this method can not satisfy reconstruction constraints

and give our speci ¢ implementation of the classical midpoint dis- ¢ gther drawbacks concern the MDI algorithm. In practice, the
placement methods (MD). This improvement of the MD methods  yq¢rsjon tree that describes the top-down process does not need to
is a part of the MCMD model, it constraints the obtained surface pa stored. Thus. in this paper, in the MDBU algorithm we save hun-

curvature. After we explain why constraints can not be satised reds of MB ( 200MB for a one million point DEM) by just using
when only the MD methods are used (cf. section 3.2) and then we 5 fnction that simulates the MD process in order to get the ascen-

present the MCMD model composed with both the MD process and yant |ist for a given child. On the other hand, in the MDI process,
an “MDI correctness” the Midpoint Displacement Bottom-Up pro-  yhe children elevations are not well weighted in the computing of
cess (MDBU). Finally, applications and results are presented and yhejr ascendant elevation(s) (jerked modi cations). Now these as-

future works are discussed. cendant children are all stored in a hashtable before proceeding to
elevation computing. Finally, a better implementation and manag-
ing of the FIFO queue results in an improvement of the algorithm
performances.

In [Belhadj and Audibert 2005b] the authors propose an approach
in two steps to generate, from scratch, realistic-looking terrain mod-
els. First, randomly generated ridge lines deform the initial mesh
in order to obtain smooth ridges. Then, a simpli ed physically-
based model is used to simulate the construction of the correspond-

ing river network. In the second step, only the ridge lines and the Under very favorable conditions, we manage to x some local con-
river network will be kept in a DEM called skeleton-DEM. This  straints and force the general aspect of surfaces produced using a
DEM is used as an input to a fractal-based method that will nal- midpoint displacement interpolation. In a classical top-down pro-
ize the generation process: the MDI algorithm add elevations to the cess, children elevations depend on their ascendants ones. Thus,
map in order to prepare the interpolation and send the result to theif this condition is met then a smooth interpolation is guaranteed.

2 Background

3 Morphologically Constrained Midpoint Dis-
placement

according midpoint displacement method.

The method proposed in [Belhadj and Audibert 2005b] suffers from
some main drawbacks. The most signi cant one refers to the inter-

But this is not suf cient to obtain a control over the aspect of the

interpolation curve. Then, to respectively constraint the local and
the global aspect of the generated DEM : favorable conditions must
be reproduced by a preliminary process (here the MDBU process)

polation function: we can not get any control over the interpolation
even if it is in the top-down (MD) or in the bottom-up (MDI) pro-
cess; thus specifying curvature constraints on the surface is impos
sible. This drawback does not affect the terrain generation when
ridge lines and rivers networks are precomputed because the inter-

polation is naturally done between the ridges (high elevations) and 3.1  The Midpoint Displacement

the rivers (low elevations). But, for example, when we have either

high or low elevation constraints the resulting surface remains at. We present our implementation of the midpoint displacement meth-
Figure 1 shows the result obtained using this previous method; hereods. Here we introduce changes in the interpolation computing in

to obtain smooth interpolations and controls over the interpolation
_computing are included in both MD and MDBU process to control
the general aspect of the obtained surface.
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Figure 4: The 1D-MD drawbacks appear when initial elevations
are given. The top diagram shows that the MD interpolation (here
without noise) produces a at curve. The result is not better when
noise is added (the bottom diagram).

Figure 2: Midpoint Displacement interpolation under ve local
constraints: the corner point elevations and the center point eleva-
tion are xed. (a)/ (b) triangle-edge resulting interpolation without

/ with noise; (c) / (d) diamond-square resulting interpolation with-
out / with noise.

d the euclidean distance from the ascendant cell to the child cell.

Heredmax is the DEM diagonal andl is used to tune the interpo-

lation curve; depending ohwe have: ( e;d) = ewhenl =0,

otherwise ( e;d) respectively decreases or increases according to

order to constraint the global aspect of the nal surface. the distancel whenl > Oorl < 0; it respectively follows a bell
curve, a line or a ridged curve whén< jlj < 1,jlj =1 or

In a 1D space and for a given sub-interval, the midpoint elevation | j > 1. Finally, a displacemert  (cf. equation (1)) is added to

is interpolated by the elevations of extreme points; a signed randomeach average computation in order to obtain a fractal surface. Fig-

displacement is added to each interpolation in order to obtain a yre 3 shows some surface behaviors according to each parameter

Fractional Brownian Motion [Mandelbrot and Ness 1968], this ran- values. Note that whers = 0, we produce an interpo|ated sur-

dom value is taken proportionally to the sub-interval size: face without fractal noise; thus andH have no effects over the

o mH 1) obtained surface.

wheresu_rand is a uniform pseudo-random number generator in 3.2 \When do the MD methods produce smooth inter-

[ 1;1], rt is used to translatsu_rand interval,rs is a scale fac- polations under local constraints ?

tor, r is the recursion leveln is the space dimension, amtl, an ’

approximation of the Hurst's parameter, controls the fractal dimen-

sion.

=(su_rand()+ rt) rs

Figures 2 and 3 present various MD interpolations where the ele-
vations of corners and center cells have been constrained. In those
In a 2D space, interpolating the midpoint elevations differs ac- very particular cases, the interpolation process works well and does
cording to the used subdivision algorithm. We study variations not produce discontinuity artifacts. When ascendant cell elevations
of the triangle-edge and the diamond-square subdivision methodsare known before (or at the same time as) their children elevations,
[Miller 1986]. A DEM is used to store values computed with the interpolation process does not produce discontinuities. Thus in

the MD method. We consider a DEM as a 2D ari&fH J[W] a 1D space, discontinuities can appear if elevations at the extremi-
of cells. Each cellE[y][x] is given by the coupleslevation ties of a sub-interval are unknown and if at the same time we know
(E[y]ix]:e a two Byte integer value) andtate (E[y][x]:'s 2 the elevations of some cells inside this same sub-interval. An ex-
fes_unknown; es_knowng). We use cell states to avoid modi-  ample of such discontinuities is shown in gure 4; the top diagram

cations on known, or already computed, elevations. Thus by inter- shows the result of an MD interpolation in an interval where initial
polating an initial DEM where favorable conditions are present (see elevations are given. Figure 5 shows 2D example where some parts
gure 2-(a) and (c), here corner cells are set to a medium elevation of the result contain discontinuities and the others don't. A centered
and the center cell is set to the maximum elevation) we obtain two circle and four segments (on the map diagonals) are respectively
different results according to the chosen method. In gure 2-(c) and initialized to maximum and medium elevations; the bottom left seg-
(d), a fractal map is generated by adding a random deviatitm ment is shifted of a unit to the left. Well interpolated elevations are
each interpolated elevation. Now, in order to get better control over those who are on the sub-rectangle diagonals. Discontinuities are
the nal surface, we bring modi cations on the average computa- clearly visible around the circle and the shifted segment.

tion: we weight each ascendant elevation according to the distance
from the interpolated point (the child). Thus our implementation

allows adjustable nonlinear interpolation: 3.3 The Midpoint Displacement Bottom-Up

o Process
(ed=e (1 (1) @ @ <))
_ 11 0 2 Figure 4 shows discontinuity problems when a cell elevation is
= 1 1<0 known while, at the same time, those of its ascendants are unknown.

We detect these situations by testing the cell states during a simu-
where ( e;d) gives the weighted elevation used in the average lation of the subdivision process. For these cells, we avoid dis-
computation according te the elevation of the ascendant cell and continuities by running a bottom-up progression that computes the
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Figure 3: DEM variations obtained with our implementation of the triangle-edge methadt & 0:4, H has no effectr{e), rt (ne),

rs=0 (M) = 04H=05rt=0,rs=0:25(c)I =
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Figure 5: MD drawbacks: the DEM is initialized with cells

describing one circle and four segments; discontinuities appear
around the circle and the fourth segment. The left image shows the
DEM after a triangle-edge interpolation; white pixels depict the
lowest elevations while black pixels depict the highest ones. The
right image shows 3D view of the DEM where black material de-
picts the constraints.

0:4,H =0:5,rt =

L,rs =0:25(d) | =0:4,H (ne), rt (ne),rs =0 (e)

=0:15(@)! = 2,H=0:5,rt= 097rs=0:55(Mh)I =2,
1 ol Initial Elevations X
\ / MDBU Displacement——
2] T —
S
©
=
w
| |
i L i vod B
) '\/\./- i ise ——
S
©
o
w
| |

Figure 6: Application of the 1D-MCMD method on a pre lled
interval: the top curve is obtained without adding noise and the
bottom one by adding noise during the MD process.

ascendant elevations according to their children ones. Finally, the
top-down process (MD) nalize the interpolation. Figure 6 shows
resulting interpolations on a pre- lled initial interval after the 1D-
MCMD algorithm. The initial elevations are the same as those used
in gure 4. The top diagram shows an MCMD interpolation with-
out noise. On the bottom diagram, noise is added only during the
MD process.

In a 2D space, we start with an initial DEM where local con-
straints are given as elevations of known state cells, the DEM is pre-
processed with the MDBU method and the associated MD method
nalizes the interpolation. Note that MDBU depends on the cho-
sen subdivision method (MD). Indeed, the subdivision scheme is
used to obtain an ascendant list for a given child cell. Then we can
store unknown-state ascendants in a hashtable and have an access
to the list of their known-state children. Thus, the elevation of an
ascendant cell (with an unknown state) can be computed according
to those of all its children (with a known state). Figure 7 shows
the process of a triangle-edge-MDBU oda 5 DEM where two
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Figure 7: Interpolation process of a triangle-edge-MDBU on a Number of initial elevations

5 5 DEM. For each step, “Active Elevations” are used to in- ) . .
terpolate their ascendants (“‘unknowr” “processed”); then for Figure 10: Interpolating downsampled data of Mount Washington
the next step, “Active Elevations” become “Idle Elevations” and USGS DEM: MCMD time consuming and RMSE are given for each
“Processed Elevations” become “Active Elevations”. The process downsampling rate (from 99% to 1%).

is stopped when there is no more “Active Elevations”.

4 Applications & Results
initial constraints are given (“Active Elevation” on the left scheme).
After the MDBU process we get ten initial constraints instead of ¢ algorithm main application is to reconstruct downsampled
two; the new constraints help the MD process to produce a smooth pens or |l no-data holes in DEMs like the SRTM DEMs [SRTM
interpolation. Finally, in order to control the interpolation curve of 2005]. In [Pouderoux et al. 2004] the authors downsampled an
the bottom-up process, we de nesy (same as in equation (2) USGS DEM of Mount Washington to 3.3% and use their algorithm
but uses its own constant calledgy ), an interpolation function to interpolate the downsampled dataset. New DEM is generated
as: and compared to the original one using a Root Mean Square Error
“d) = _d_yilbul (RMSE) computation. Here we choose to make the same test in

eu (&) e (o) @@ dmax ) N @ order to evaluate our method ef ciency. Starting with a 1050625
wheree is an elevationg an euclidean distanch,, tunes the inter- elevation dataset of Mount Washington DEM (each elevation is
polation curve and is the same as the one de ned in equation (2). given in two bytes, the terrain unit is equal to 0.019836 meters and
Thus, the algorithm 1 gives the MDBU method details. we have 58405 different samples), we downsample randomly it to
35721 elevations (3.3% of the original one) and then reconstruct the
dataset using the MCMD method. Figure 9-(a) shows a 3D view of
the original Mount Washington DEM and gure 9-(b) shows a 3D
view of the reconstructed DEM using our MCMD algorithm. As

Put all initial cells in a FIFO Queue FQ;
while not_empty(FQYo

while E  get(FQ)do
for all A ascendant of Eo
if A.s =es_unknowihen
add, if does not exist, A in hashtable T;
add E in T[A]: list of known child of A;
end if
end for
end while
for all cells A'in Tdo
e n O
for all C known child of A in T[A]; do
e e+ gy (C.e, euclidean_distance(A, C));
n n+1;
end for
Ae &,
A.s es_known;
Remove A (and its known children) from T,
Put Ain FQ;
end for

end while

Algorithm 1 : The MDBU algorithm.

in [Pouderoux et al. 2004], the reconstructed dataset and the origi-
nal one are compared using an RMSE computation. We obtain an
RMSE that is about 5.8 meters against 5.04 meters in [Pouderoux
et al. 2004]. The reconstruction time using our method is about
2.97 seconds (MDBU: 2.73s + MD: 0.24s)The approximation

we obtain is as good as the one in [Pouderoux et al. 2004] and our
algorithm is more than 150 times faster (2.97s against 531s). The
curves, gure 10, con rm these good results for any downsampling
rate. From a complexity viewpoint, as the MD process does not
depend on local constraints (its complexityQ§NlogsN ) where

N = W H) this means that the time consuming variation on
gure 10 depends only on the bottom-up process. Actually, MDBU
becomes time consuming when initial constraints are in deep part of
the subdivision process tree. Thus, one worst case can be obtained
when all the tree leaves are known and all other tree nodes not (odd
index data whew = 2" +1 andH = 2™ + 1); here the com-
plexity is aboutO(C(logsN )?) whereC & is the constraint
number.

Please view the movie that illustrates the reconstruction process of
the Mount Washington DEM. The movie is mpeg4-encoded and is
available at:

http://www.ai.univ-paris8.fr/"amsi/papers/afrigraph

07/

Figure 8 shows that the MCMD method suppresses the defectsFigures 9-(c), (d), and (e) show a second interesting result in DEM
appearing in gure 5: (a) shows the preliminary result after the reconstruction. (c) shows the SRTM DENS6E008.hgt ob-

MDBU algorithm; (b)/(c) shows the (DEM)/(3D view) after the en-
tire interpolation process and (d) shows an interpolation process
where fractal noise is added.

1All our computational times have been clocked on a Pentium IMzG

with 1GB of memory
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Figure 8: Steps and some variations of the MCMD method: (a) The DEM after the MD@blitam: cells are added around the initial

circle and segments; (b) The DEM after a triangle-edge-MCMD interpolatidg, = 6,1 = 1); (c) 3D view of (b); (d) 3D view of a
triangle-edge-MCMD interpolation with noisety, =5,1 = 0:7,H =0:4,rt = 1,rs =0:2).
(a) (b)
(© (d) (e)

Figure 9: Reconstructing / Filling no-data holes of satellite DEMs. (a) Shows a 3D vfedveooriginal Mount Washington USGS DEM.
This DEM is randomly downsampled to 35721 elevations (3.3% of the ofiBiE&). Then the MCMD method is used to interpolate the
downsampled data in order to obtain (b) in 2.97 seconds and with an RM&EB meters. (c), (d) and (e) : Reconstructing / Filling no-data
holes of an SRTM DEM: (c) The original SRTM DEM,; (d) More than 90%ath from (c) are deleted using a Sobel edge detection; (e)
Rebuilding the SRTM DEM by applying the MCMD method on (d). Note thaatekwble from (a) is lled in (c).



tained from the Shuttle Radar Topography Mission database (cf. only have one behavior around a xed elevation (a local constraint).
[SRTM 2005]). In (d), more than 90% of data from (c) are deleted, With contour lines two behaviors are necessary in order to interpo-
we use a silhouette detection in order to keep a minimum of infor- late upper neighbors (one side of the contour line) and lower ones
mation. And then in (e), the MCMD method is used to Il the “lost”  (the other side).

data. We can see that there is a striking resemblance between (c)

and the result of the rebuilding of (c) starting from (d). This resem-

blance, is also con rmed by an RMSE computation between the References
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Figure 11: Realistic renderings of models generated from scratch (quarter milliont peddels). The model rendered in (a) was generated
in 0.61 seconds (0.5s to generate the skeleton of the ridge and rivieverkeand 0.11s to produce the surface using our MCMD method);
the used parameters aré:= 1:0;lgy =6:0;H =0:49;rt =0:0;rs = 0:5. The model rendered in (b) was generated in 0.12 seconds; the
used parameters ard: = 1:1;1gy = 10:0;H =0:48;rt =0:0;rs =0:5.
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Figure 12: Realistic renderings of models (a million point) generated using a usertsksttocal constraints. The model rendered in (a)
was generated in 0.25 seconds; the used parameterd are: 1:1;1gy = 20:0;H =0:45rt = 0:2;rs = 1:0. The model rendered
in (b) was also generated in 0.25 seconds (here we use the same dosttaints); the used parameters are:= 1:1;1gy = 4:0;H =

0:45;rt =0:0;rs = 1:1.

(a) (b)

Figure 13: Application of the MCMD method in material modeling. Here a rough-codt painting effect is reproduced. This million
point model was generated in 3.66 seconds (0.34s for the MCMD metiab8.32s for the median lter) ; the used parameters are:

| =3:0;lgy =7:5;H =0:5;rt =0:1;rs =1:3.



